Reactions of Ir(CO)(H)(P(*p***-tolyl)₃)₃ with SO₂ and O₂ Mixtures and with H₂SO₄, Formation of a Sulfate-Bridged Dimer, and Crystal and Molecular Structure of** $Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂$

Cynthia A. Miller, Thomas S. Janik, Melvyn Rowen Churchill, and Jim D. Atwood*

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000

*Recei*V*ed September 26, 1995*^X

Reactions of HIr(CO)($P(p$ -tolyl)₃)₃ with SO₂, O₂, mixtures of SO₂ and O₂, and H₂SO₄ are described. Reactions with mixtures of SO_2/O_2 and with H₂SO₄ lead to a common product, Ir₂H₄(μ -SO₄)(P(p -tolyl)₃₎₆, where a bidentate SO_4^2 ⁻ bridges the iridium centers. The complex HIr(CO)($P(p$ -tolyl)₃)₃ is stable toward O_2 but reacts readily with SO_2 to give HIr(CO)(SO_2)($P(p$ -tolyl)₃)₂, which was characterized by a crystal structure determination. The species Ir(CO)(H)(SO₂)(P(*p*-tolyl)₃)₂ crystallizes in the centrosymmetric triclinic space group *P*1 with $a = 10.675(1)$ Å, $b = 10.882(1)$ \AA , $c = 17.740(2)$ \AA , $\alpha = 84.626(10)^\circ$, $\beta = 83.432(10)^\circ$, $\gamma = 87.043(10)^\circ$, $V = 2036.6(3)$ \AA ³, and $Z = 2$. Diffraction data (Mo Kα, $2\theta = 4.5-45.0^{\circ}$) were collected on a Siemens R3m/V diffractometer, and the structure was refined to $R = 3.00\%$ for 4218 independent reflections with $F_0 \ge 6\sigma(F_0)$. The five-coordinate iridium(I) center has a distorted environment (closer to trigonal bipyramidal than to square pyramidal) with $H(1)$ -Ir(1)-S(1) = 171.4(23)°. Bond lengths are Ir-P = 2.303(2) and 2.320(2) Å, Ir-SO₂ = 2.372(2) Å, Ir-CO = 1.906(8) Å, and Ir-H = 1.65(7) Å. The SO₂ ligand has bond distances of S(1)-O(1) = 1.442(7) and S(1)-O(2) $= 1.441(7)$ Å, with $O(1) - S(1) - O(2) = 113.1(4)$ °.

Reactions of hydride complexes are fundamental for organometallic chemistry and for homogeneous catalysis.^{1,2} Relatively few studies have focused on reactions of metal hydrides with species such as O_2 , SO_2 , or H_2SO_4 because strong oxidants and a metal hydride are inherently reactive. A dispute³ regarding the reaction of SO_2 with Ir(CO)(H)(PPh₃)₃ was recently resolved.4c

$$
\begin{aligned} \text{Ir(CO)}(\text{H})(\text{PPh}_3)_3 + \text{SO}_2 &\rightarrow \text{Ir(CO)}(\text{H})(\text{SO}_2)(\text{PPh}_3)_2 + \\ \text{PPh}_3 &\rightleftharpoons \text{Ir(CO)}(\text{SO}_2\text{H})(\text{PPh}_3)_2 + \text{PPh}_3 \end{aligned}
$$

The insertion product, $Ir(CO)(SO₂H)(PPh₃)₂$, is similar to the insertion products we have observed for various hydroxide and alkoxide complexes.⁴ Changing from PPh₃ to $P(p$ -tolyl)₃ frequently improves solubility to allow better characterization of reaction products. As a part of our continuing studies⁴ of reactions of sulfur dioxide with iridium complexes, we examined the reactions of Ir(CO)(H)(P(p -tolyl)₃)₃ with SO₂, O₂, mixtures of SO_2 and O_2 , and H_2SO_4 .

Experimental Section

IrCl3'*x*H2O was purchased from Johnson Matthey. Tri-*p*-tolylphosphine was purchased from Strem Chemical Co. SO₂ (anhydrous) and O2 (CP grade) were purchased from Matheson. Benzene, toluene, and

- ^X Abstract published in *Ad*V*ance ACS Abstracts,* May 1, 1996.
- (1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987.
- (2) Parshall, G. W.; Ittel, S. D. *Homogeneous Catalysis*, 2nd ed.; Wiley: New York, 1992.
- (3) (a) Levison, J. J.; Robinson, S. D. *J. Chem. Soc.*, *Dalton Trans.* **1972**, 2013. (b) Bell, L. K.; Mingos, D. M. P. *J. Chem. Soc., Dalton Trans.* **1982**, 673.
- (4) (a) Randall, S. L.; Thompson, J. S.; Buttrey, L. A.; Ziller, J. W.; Churchill, M. R.; Atwood, J. D. *Organometallics* **1991**, *10*, 683. (b) Randall, S. L.; Miller, C. A.; See, R. F.; Churchill, M. R.; Janik, T. S.; Lake, C. H.; Atwood, J. D. *Organometallics* **1994**, *13*, 5088. (c) Randall, S. L.; See, R. F.; Churchill, M. R.; Miller, C. A.; Atwood, J. D. *Organometallics* **1994**, *13*, 141.

tetrahydrofuran were all dried by refluxing over CaH2, distilling onto Na/benzophenone, refluxing over Na/benzophenone, and distilling into an air-free container. The purified solvents were stored in an argonfilled inert-atmosphere glovebox. Infrared spectra of KBr pellets and solutions were measured on a Mattson Polaris FTIR instrument in the $2200-400$ cm⁻¹ region. NMR spectra were recorded on a Varian VXR 400 spectrometer and were referenced to the deuterated solvent for 1H spectra or to H_3PO_4 for $31P$ spectra.

Preparation of Ir(CO)(H)(P(p **-tolyl)₃)₃. In an argon atmosphere,** *trans*-Ir(CO)(Cl)(P(*p*-tolyl)₃)₂⁵ (101 mg, 0.117 mmol) and P(*p*-tolyl)₃ (177 mg) were placed in a Schlenk flask equipped with a gas adapter. The reaction vessel was sealed and transferred to a hood, where 30 mL of dearated ethanol was added with a positive N_2 pressure. The solution was brought to reflux, and a dearated solution of NaBH₄ (100 mg) in absolute ethanol (25 mL) was added to the flask. The solution was allowed to reflux for a further 15 min under a nitrogen atmosphere. The reaction mixture was cooled under N_2 and allowed to stir overnight with a reduced volume of ethanol (40 mL total remaining). After 15 h, a light yellow powder had precipitated. The solid was filtered off (109 mg, 0.0906 mmol, 82.1% yield) and transferred to an argon atmosphere glovebox. The product was characterized by IR spectroscopy [$ν_{\rm CO}$ (KBr) 1925 (vs) cm⁻¹, $ν_{\rm Ir-H}$ 2050 (s) cm⁻¹] and NMR spectroscopy $[{}^{31}P$ NMR (CDCl₃) 12.2 ppm; ¹H NMR resonances -10.7 (q) $[J = 20 \text{ Hz}]$, 2.4 (s), 7.0–7.2 (m) ppm]. The characterization data are similar to those previously reported.⁶

Preparation of Ir(CO)(H)(SO₂)(P(p **-tolyl)₃)₂. In an argon atmo**sphere, $Ir(CO)(H)(P(p-toly1)_3)$ ₃ was suspended in hexanes in a Schlenk flask equipped with a gas adapter. The reaction vessel was sealed and transferred to a hood where 1 atm of $SO₂$ was passed over the solution for 20 min, turning the yellow solution orange. The orange precipitate was filtered off in the hood and transferred into the drybox. An infrared spectrum in KBr showed v_{CO} 2064 (vs) cm⁻¹, $v_{\text{Ir-H}}$ 1965 (s) cm⁻¹, and v_{SO} 1037, 1177 cm⁻¹. NMR: ¹H, -2.8 (t) ppm; ³¹P, 16.8 ppm (-7.4 ppm for free $P(p$ -tolyl)₃). On the basis of the data, the product is assigned as $Ir(CO)H(P(p-toly1)_3)_2(SO_2)$. This is consistent with the previously reported Ir(CO)H(PPh₃)₂(SO₂) complex [$ν$ _{CO} 2050 (vs), $ν$ _{Ir-H} 1965 (s), $v_{\rm SO}$ 1037, 1175 cm⁻¹).³ NMR: ³¹P, 16.7 ppm; ¹H, -2.8 (t)

⁽⁵⁾ Lawson, H. J.; Atwood, J. D. *J. Am. Chem. Soc.* **1989**, *111*, 6223.

^{(6) (}a) Bath, S. S.; Vaska, L. *J. Am. Chem. Soc.* **1963**, *85*, 3500. (b) Yagupsky, G.; Wilkinson, G. *J. Chem. Soc. A* **1969**, 725.

ppm, $J_{P-H} = 18.0$ Hz]. A saturated solution of the SO_2 complex in benzene was placed in one side of a H-tube, and hexanes were placed in the other. After 5 days, crystals suitable for X-ray crystallography formed.

Preparation of $Ir_2(\mu\text{-}SO_4)(H)_4(P(\mu\text{-}tolyl)_3)_6$ **.** Ir(CO)H(P(p -tolyl)₃)₃ (0.152 g) was dissolved in 30 mL of THF in an argon atmosphere. The Schlenk flask was sealed and transferred to a hood, where 5 drops of dearated H_2SO_4 were added under a positive N_2 pressure. The resulting solution was stirred for 1 h (less time may result in the presence of starting material in the reaction products), after which the volume of THF was reduced (15 mL), followed by the addition of dearated distilled water to precipitate a yellow-white solid (0.121 g). Attempts to recrystallize this product were unsuccessful (benzene/ hexane; THF/hexane; slow evaporation of benzene; CD₂Cl₂ in a freezer).

Reaction of SO₂ and O₂ with Ir(CO)(H)(P(p **-tolyl)**₃)₃ or O₂ with $Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂$. These two reactions are similar in producing a major product in a mixture. For reaction of Ir(CO)(H)- $(P(p$ -tolyl)₃)₃ with SO₂ and O₂, a saturated solution of Ir(CO)H(P(*p*- tolyl_{3})₃ in CD₂Cl₂ was prepared under an argon atmosphere. An NMR tube equipped with a vacuum adapter was transferred to the highvacuum line, where 50 Torr of $SO₂$ was added to the frozen solution and the solution was thawed. Next the solution was refrozen, and 50 Torr of O_2 was added. The NMR tube was sealed, the contents were thawed, and an NMR spectrum was recorded. $H NMR$: -11 (dtd), -9.6 (qd), -7.3 (m), -2.8 (t), $2.3-2.4$ (m), $6.8-7.9$ (m) ppm. The -2.8 (t) ppm signal is assigned to the previously prepared Ir(CO)H- $(SO₂)(P(p-toly1)₃)₂$ complex. The ³¹P NMR spectrum resulted in several resonances as well: -7.4 (br), -5 , -0.4 , 16.8, 28 ppm. The -7.4 ppm resonance is assigned to free phosphine, the 16.8 ppm resonance to Ir(CO)H(SO₂)($P(p$ -tolyl)₃)₂, and the 28 ppm resonance to phosphine oxide. The solution was allowed to remain in the NMR tube for 3 days, and another NMR spectrum was recorded. The -11 (dtd) ppm resonance $[J = 100, 18, 3.6$ Hz and the -9.6 (qd) ppm resonance [16.4, 3.6] remained in the 1H NMR spectrum. The hydride peaks at -11 (dtd) and -9.6 (qd) ppm were in a ratio of 1:1. Two triplets at -19.5 and -5.3 ppm were present in smaller, variable amounts. The solvent was removed, and an IR (KBr) spectrum was recorded giving rise to two absorbances in the Ir-H stretching region of 2002 and 2050 (sh) and multiple absorbances in the SO region of 448, 568, 657, 729, 910, 1115, and 1176 cm⁻¹ but no indication of a C=O stretch.

Reaction of Ir(CO)(H)(SO₂)(P(p -tolyl)₃)₂ with O₂ proceeded similarly.

(a) In an argon atmosphere, a dilute solution of $Ir(CO)H(SO₂)(P(p-1))$ $\text{tolyl}_{3/2}$ in toluene was prepared. The sealed Schlenk flask was transferred to a hood and O_2 was passed over the solution with stirring for 2 h. An IR spectrum was recorded giving rise to two absorbances at 2036 (s) and 2070 (sh) cm^{-1} .

(b) An NMR spectroscopic study of the same reaction as in part a was performed. In an argon atmosphere, a saturated solution of Ir- $(CO)H(SO₂)(P(p-tolyl)₃)₂$ in CD₂Cl₂ was prepared. The NMR tube was removed from the box, and O_2 was bubbled into the solution for 5 min. The solution remained under an O_2 atmosphere for 24 h before an NMR spectrum was recorded. The resonances in the 31P NMR spectrum are as follows: $-19.4, -3.5, -3.4, -1.6, -0.4, 6.4, 6.9,$ and 28 ppm, with the major resonances being at 28 and -3.4 ppm. The 28 ppm resonance is attributed to phosphine oxide.

Collection of X-ray Diffraction Data for $Ir(CO)(H)(SO_2)(P(p-1))$ **tolyl**)₃)₂. A single crystal, with approximate dimensions of 0.2×0.2 \times 0.3 mm, was selected for the diffraction study. It was sealed in a thin-walled glass capillary and aligned on a Siemens R3m/V diffractometer with its extended direction close to collinear with the ϕ axis. Crystal alignment, determination of cell dimensions, and data collection (coupled θ (crystal)-2 θ (counter) mode) were carried out as described previously;7 details are provided in Table 1.

The crystal belongs to the triclinic system $(1 \text{ or } C_i$ symmetry of diffraction only), possible space groups being the noncentrosymmetric *P*1 (C_1^1 ; No. 1) and the centrosymmetric $P\overline{1}$ (C_1^1 ; No. 2). The latter, centrosymmetric, possibility was selected on the basis of (i) intensity statistics and (ii) its far greater frequency of occurrence, particularly

Table 1. Crystallographic Data for $Ir(CO)(H)(SO₂)(P(p-toly1)₃)₂$

empirical formula $C_{43}H_{43}IrO_3P_2S$	$fw = 894.0$
$a = 10.675(1)$ Å	space group = $P1$ (No. 2)
$b = 10.882(1)$ Å	$T = 297 K$
$c = 17.740(2)$ Å	$\lambda = 0.71073$ Å
$\alpha = 84.626(10)^\circ$	$\rho_{\rm calc} = 1.458 \text{ Mg/m}^3$
$\beta = 83.432(10)$ °	$\mu = 3.426$ mm ⁻¹
$\gamma = 87.043(10)$ °	$R(F_0)^a = 3.00\%$
$V = 2036.6(3)$ Å ³ $Z = 2$	$R_{\rm w}(F_{\rm o}) = 3.94\%$

^a The *R* values are for observed data.

with $Z = 2.8$ This choice was confirmed by the successful solution and refinement of the structure in this higher-symmetry space group. All reflections were corrected for Lorentz and polarization effects and for absorption.

Solution and Refinement of the Structure. All calculations were performed with the Siemens SHELXTL PLUS program package.⁹ The analytical scattering factors for the neutral atoms were corrected for both the real $(\Delta f')$ and imaginary $(i\Delta f'')$ components of anomalous dispersion.10 The structure was solved by a combination of Patterson, difference-Fourier, and least-squares refinement methods. Convergence was reached with $R(F) = 3.00\%$ and $R_w(F) = 3.94\%$ for those 4218 reflections with $F_0 \ge 6\sigma(F_0)$. Anisotropic thermal parameters were applied to all non-hydrogen atoms. The hydride ligand $(H(1))$ was located and refined, while the remaining organic hydrogen atoms were placed in optimized locations with $d(C-H) = 0.96$ Å.¹¹ Final coordinates are collected in the Supporting Information.

Results and Discussion

Reaction with SO₂. The hydride, $Ir(CO)(H)(P(p-toly1)_3)_3$, readily reacted with SO_2 to form $Ir(CO)(H)(SO_2)(P(p-toly1)_3)_2$. This complex is characterized by IR and ³¹P and ¹H NMR data as the hydride. The data are completely consistent with those previously reported for $Ir(CO)(H)(SO_2)(PPh_3)_2^{3,4}$ For the synthesis as a suspension in hexane, no evidence is seen for the inserted complex, $Ir(CO)(SO₂H)(P(p-toly1)₃)₂$; the expected ¹H resonance at ∼4.5 ppm and the ³¹P signal at ∼20 ppm were absent. To confirm the structural assignment of this complex and the previous assignments of the PPh₃ analogue, we determined the structure of $Ir(CO)(H)(SO₂)(P(p-toly1)₃)₂$.

Description of the Molecular Structure of Ir(CO)(H)(SO2)- $(P(p-toly1)_3)_2$. The crystal consists of ordered molecular units of Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂, separated by normal van der Waals distances. There are no abnormally short intermolecular contacts. The overall molecular geometry and labeling of atoms are depicted in Figure 1; selected interatomic distances and angles are collected in Table 2.

The central iridium(I) atom has an irregular coordination environment (local symmetry *m* or *Cs*) almost midway between trigonal bipyramidal (with the H and $SO₂$ ligands in axial sites) and square pyramidal (with the CO ligand in the unique axial site). There are two particularly large interligand angles, $H(1)$ Ir(1)-S(1) = 171.4(23)° and P(1)-Ir(1)-P(2) = 153.9(4)°, which might be taken as indicative of *trans*-basal angles in a square pyramidal geometry. However, one would then expect the P-Ir-P angle (which is associated with the most bulky ligands) to be more obtuse than the H-Ir-S angle; this is not the case. Furthermore, the apical-basal angle $C(11)-Ir(1)$ - $H(1)$ is acute (79.1(24)°), rather than obtuse. We therefore

(11) Churchill, M. R. *Inorg. Chem.* **1973**, *12*, 1213.

⁽⁷⁾ Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. *Inorg. Chem.* **1977**, *16*, 265.

⁽⁸⁾ Nowacki, W.; Matsumoto, T.; Edenharter, A. *Acta Crystallogr.* **1967**, *22*, 935.

⁽⁹⁾ Sheldrick, G. M. *SHELXTL PLUS (Release 4.11 VMS)*; Siemens Analytical Instruments, Inc.: Madison, WI, 1990. (See also Siemens *SHELXTL PLUS Manual*, 2nd ed., 1990).

⁽¹⁰⁾ *International Tables for X-Ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. 4, pp 99-101, 149-150.

Figure 1. Molecular geometry and labeling of atoms for Ir(CO)(H)- $(SO₂)(P(p-tolyl)₃)₂$ shown by an ORTEP2 diagram with 20% probability contours for the atomic vibration ellipsoids. Hydrogen atoms (other than the hydride ligand, H(1)) have been omitted for the sake of clarity.

Table 2. Selected Interatomic Distances (Å) and Angles (deg) for $Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂$

(A) Iridium-Ligand Distances					
$Ir(1) - H(1)$	1.648(69)	$Ir(1)-P(1)$	2.303(2)		
$Ir(1)-P(2)$	2.320(2)	$Ir(1)-S(1)$	2.372(2)		
$Ir(1)-C(11)$	1.906(8)				
		(B) Phosphorus-Carbon Distances			
$P(1) - C(51)$	1.822(7)	$P(2)-C(21)$	1.831(7)		
$P(1) - C(61)$	1.821(7)	$P(2) - C(31)$	1.818(7)		
$P(1) - C(71)$	1.816(7)	$P(2)-C(41)$	1.820(7)		
		(C) Sulfur-Oxygen and Carbon-Oxygen Distances			
$S(1) - O(1)$	1.442(7)	$C(11) - O(11)$	1.129(10)		
$S(1) - O(2)$	1.441(7)				
		(D) Angles around Iridium Atom			
$H(1) - Ir(1) - P(1)$	78.2(27)	$H(1) - Ir(1) - P(2)$	85.8(27)		
$P(1) - Ir(1) - P(2)$	153.9(1)	$H(1) - Ir(1) - S(1)$	171.4(23)		
$P(1) - Ir(1) - S(1)$	103.7(1)	$P(2) - Ir(1) - S(1)$	95.2(1)		
$H(1) - Ir(1) - C(11)$	79.1(24)	$P(1) - Ir(1) - C(11)$	95.9(3)		
$P(2)-Ir(1)-C(11)$	101.2(3)	$S(1)$ -Ir(1)-C(11)	92.3(2)		
		(E) Angles around Phosphorus Atoms			
$Ir(1)-P(1)-C(51)$	118.1(2)	$C(51)-P(1)-C(61)$	106.6(3) 102.3(3)		
$Ir(1)-P(1)-C(61)$ $Ir(1)-P(1)-C(71)$	101.6(2) 121.9(2)	$C(51)-P(1)-C(71)$ $C(61) - P(1) - C(71)$	104.8(3)		
$Ir(1)-P(2)-C(21)$	118.3(2)	$C(21) - P(2) - C(31)$	103.9(3)		
$Ir(1)-P(2)-C(31)$	108.9(2)	$C(21) - P(2) - C(41)$	105.4(3)		
$Ir(1)-P(2)-C(41)$	115.0(2)	$C(31) - P(2) - C(41)$	104.0(3)		
(F) Angles within Ir $-SO_2$ and Ir $-C-O$ Systems					
$Ir(1)-S(1)-O(1)$	107.2(2)	$Ir(1)-S(1)-O(2)$	107.2(2)		
$O(1)-S(1)-O(2)$	113.1(4)	$Ir(1)-C(11)-O(11)$	175.3(7)		
(G) P-C(ipso)- C(ortho) Angles					
$P(2) - C(21) - C(22)$	119.7(6)	$P(2) - C(21) - C(26)$	123.1(5)		
$P(2) - C(31) - C(32)$	122.4(5)	$P(2) - C(31) - C(36)$	120.4(5)		
$P(2) - C(41) - C(42)$	119.4(5)	$P(2) - C(41) - C(46)$	123.0(5)		
$P(1) - C(51) - C(52)$	120.6(5)	$P(1) - C(51) - C(56)$	121.0(5)		
$P(1) - C(61) - C(62)$	118.3(5)	$P(1) - C(61) - C(66)$	123.1(5)		
$P(1) - C(71) - C(72)$	122.3(5)	$P(1) - C(71) - C(76)$	120.0(5)		
(H) C-C(ipso)-C Angles					
$C(22) - C(21) - C(26)$	117.2(7)	$C(52) - C(51) - C(56)$	118.3(7)		
$C(32) - C(31) - C(36)$	117.2(6)	$C(62) - C(61) - C(66)$	118.3(6)		
$C(42) - C(41) - C(46)$	117.6(6)	$C(72) - C(71) - C(76)$	117.7(6)		

choose to discuss the molecule within the framework of the trigonal bipyramidal description.

The axial sites are then occupied by a hydride ligand (with Ir(1)-H(1) = 1.65(7) Å) and an S-bonded sulfur dioxide ligand $(\text{Ir}(1)-\text{S}(1)) = 2.372(2)$ Å). The equatorial sites are occupied by two tri-*p*-tolylphosphine ligands $(Ir(1)-P(1)) =$ 2.303(2) Å and Ir(1)-P(2) = 2.320(2) Å) and a carbonyl ligand $(\text{Ir}(1)-\text{C}(11)) = 1.906(8)$ Å, with $\text{C}(11)-\text{O}(11) = 1.129$ -(10) Å and $Ir(1)-C(11)-O(11) = 175.3(7)$ °). The angle between the apical ligands $(H(1)-Ir(1)-S(1) = 171.4(23)°)$ is close to 180°, but is of limited precision. The diequatorial angles are irregular $(P(1)-Ir(1)-P(2) = 153.9(1)°, P(2)-Ir (1)-C(11) = 101.2(3)$ °, and $P(1)-Ir(1)-C(11) = 95.9(3)$ °). The iridium atom lies $+0.328$ Å from the P(1) \cdots P(2) \cdots C(11) plane, with other relevant displacements of atoms being $+2.671$ Å for S(1) and -1.32 Å for H(1). Clearly, the equatorial ligands are displaced so as to encroach on the cone angle normally occupied by an axial ligand more substantial than a hydride ligand; thus we have $H(1)-Ir(1)-P(1) = 78.2$ - $(27)^\circ$, H(1)-Ir(1)-C(11) = 79.1(24)°, and H(1)-Ir(1)-P(2) $= 85.8(27)$ °. This observation is in keeping with studies on $Rh(H)(PPh₃)₄¹²$ and $Rh(H)(AsPh₃)(PPh₃)₃¹³$ in which the arrangement of triphenylpnictogen ligands is such as to produce an essentially tetrahedral $RhP₄$ or $RhAsP₃$ moiety, with the hydride ligand appearing to have no obvious stereochemical effect on the geometry.

The sulfur dioxide ligand is S-bonded to the iridium(I) center and has equivalent sulfur-oxygen bond lengths $(S(1)-O(1) =$ 1.442(7) Å and $S(1)-O(2) = 1.441(7)$ Å). The sulfur atom has a pyramidal geometry with bond angles of $O(1)-S(1)$ - $O(1) = 113.1(4)°$, Ir(1)-S(1)-O(1) = 107.2(2)°, and Ir(1)- $S(1)-O(2) = 107.2(2)$ °.

The tri- p -tolylphosphine ligands have the expected $P-C(ipso)$ distances, ranging from 1.816(7) to 1.831(7) \AA and averaging 1.821 Å. The internal angles at the ipso carbon atoms are all less than 120° (ranging from C(32)-C(31)-C(36) = 117.2-(6)° to C(62)-C(61)-C(66) = 118.3(6)° and averaging 117.7°; this distortion of the carbocyclic ring from D_{6h} to C_{2v} symmetry is well established¹⁴ and is the result of the electronegative phosphorus atom at the ipso position.15 One unexpected result is the large range of Ir-P-C(ipso) angles (from $Ir(1)-P(1)$ - $C(61) = 101.6(2)$ to $121.9(2)°$). In most triphenylphosphine complexes these angles are greater than the regular sp³ angle of 109.5°, with the C-P-C angles typically being less than 109.5°. In the present structural study, the anomalous angles are Ir(1)-P(1)-C(61) = 101.6(2)° and Ir(1)-P(2)-C(31) = $108.9(2)$ °; in each case, these small angles result from the phenyl group being displaced from its regular position into the cavity around the axial hydride ligand.

All other distances and angles are self-consistent and are within accepted norms. This structural study provides the first example of an iridium complex containing both hydride and SO2 ligands. It also provides the first example of a fivecoordinate $SO₂$ adduct that is trigonal bipyramidal rather than square planar.⁴ In this complex, the SO_2 is pyramidal as in the previous examples.4,16

Reaction of Ir(CO)(H)(P(p **-tolyl)₃)₃ with SO₂ and O₂.** Reaction of Ir(CO)(H)(P(p -tolyl)₃)₃ with O₂ in solution (CDCl₃) or CH_2Cl_2) results in a small amount of a product consistent with the equilibrium.

- (12) Baker, R. W.; Pauling, P. *J. Chem. Soc., Chem. Commun.* **1969**, 1495.
- (13) Baker, R. W.; Ilmaier, B.; Pauling, P. J.; Nyholm, R. S. *J. Chem. Soc., Chem. Commun.* **1970**, 1077.
- (14) Churchill, M. R.; DeBoer, B. G. *Inorg. Chem.* **1975**, *14*, 2630.
- (15) Dominicano, A.; Vaciago, A.; Coulson, C. A. *Acta Crystallogr., Sect. B.* **1975**, *B31*, 1630.
- (16) La Placa, S. J.; Ibers, J. A. *Inorg. Chem.* **1966**, *5*, 405.
- (17) Nakamoto, K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 3rd ed.; John Wiley and Sons: New York, 1978; p 239.

$$
\text{Ir(CO)}(\text{H})(\text{P}(p\text{-tolyl})_3)_3 + \text{O}_2 \rightleftarrows
$$

$$
Ir(CO)(H)(O_2)(P(p\text{-}tolyl)_3)_2 + P(p\text{-}tolyl)_3
$$

The ¹H NMR characterization (-11.0 (t) ppm, $J_{P-H} = 7.6$) is consistent with a small amount of $Ir(CO)(H)(O_2)(P(p-toly))_3)_2$ being formed, although the amount was less than 5% after 3 days. Basically, $Ir(CO)(H)(P(p-toly1)_3)_3$ can be considered stable to oxygen.

Reaction of $Ir(CO)(H)(P(p-toly1)_3)_3$ with SO_2 and O_2 produces a number of products; the same mixture is obtained from Ir- $(CO)(H)(SO₂)(P(p-toly1)₃)₂$ reacting with $O₂$ and from Ir(CO)- $(H)(P(p-toly1)_3)_3$ reacting with mixtures of SO_2 and O_2 . Since Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂ is observed when Ir(CO)(H)(P(p- tolyl_{3})₃ reacts with SO_2 and O_2 , it is likely the common intermediate. Both free $P(p$ -tolyl)₃ and $OP(p$ -tolyl)₃ indicate phosphine lability in the system. A major iridium-containing product (described fully below) and two minor products are apparent. The minor products contain two equivalent $P(p$ -tolyl)₃ ligands and a hydride (triplets at -19.5 and -5.3 ppm). Conversion of SO_2 and O_2 to sulfate is commonly observed on iridium (I) centers,^{4,18} and it is likely that all of the products are iridium(III) sulfates. The minor products could have the sulfate group as bidentate on one iridium or μ - η ⁴ bridging two iridium centers, but the amounts are too low for definitive characterization.

Reaction of Ir(CO)(H)(P(p **-tolyl)₃)₃ with H₂SO₄. To pro**vide further information on the possible products from reactions of Ir(CO)(H)(P(p -tolyl)₃)₃ with SO₂ and O₂, the iridium hydride complex was reacted with sulfuric acid. A saturated solution of Ir(CO)H($P(p$ -tolyl)₃)₃ in CD₂Cl₂ was prepared in an NMR tube in the inert-atmosphere glovebox. The NMR tube was transferred to a hood, and a drop of dearated H_2SO_4 was added, causing the formation of a gray suspension. A 1H NMR spectrum of the resulting solution was recorded giving rise to two hydride resonances at -15.2 (dtd) $[J = 113.6, 18.4, 3.6]$ Hz] and -13.3 (qd) ppm $[J = 16.8, 3.6$ Hz] in a ratio of 1:1. The ³¹P NMR spectrum only combined two resonances as well; -3.3 (t) [$J = 14.6$ Hz] and -0.3 (d) ppm [$J = 14.6$ Hz] in a ratio of 2:1. This reaction was also performed as a synthetic reaction (see Experimental Section); unfortunately, all efforts to crystallize the product failed.

Nature of the Primary Product. Even in the absence of crystallographic or analytical data, the spectroscopic data unambiguously allow assignment of the structure of the common product as $Ir_2H_4(\mu$ -SO₄)(P(p-tolyl)₃)₆. The required structure is shown in Figure 2. The hydride portion of the NMR spectrum consists of two resonances in a 1:1 ratio. The resonance for H_a is a doublet ($J_{P_a-H_a}$ = 100 Hz) of triplets ($J_{P_b-H_a}$ = 18 Hz) of doublets ($J_{\text{H}_{b}-\text{H}_{a}}$ = 3.6 Hz) at -11.6 ppm as required for the structure shown in Figure 2. The resonance for H_b is a quartet $(J_{P-H_b} = 16.4 \text{ Hz})$ of doublets $(J_{H_a-H_b} = 3.6 \text{ Hz})$ at -9.7 ppm . The three *cis* phosphorus atoms must appear equivalent to give the quartet. The ³¹P spectrum, proton decoupled, shows a doublet (J_{P-P} = 14.6 Hz) at -0.5 ppm and a triplet (J_{P-P} = 14.6 Hz) at -3.3 ppm in a 2:1 ratio. These NMR data require the geometry shown in Figure 2. The infrared data are also consistent with this structure. Two Ir-H stretches are observed at 2050 (sh) and 2002 (s) cm^{-1} . The bridging sulfate is also confirmed by the infrared spectral data in Table 3, where a comparison is made to a known complex with sulfate bridging two metals.¹⁷ Reaction of H_2SO_4 with a cobalt complex produced a very similar μ -SO₄ complex.¹⁸

The spectroscopic data, ¹H and ³¹P NMR and IR, are in excellent agreement with the suggested structure (Figure 2). The

Figure 2. Geometry of the sulfate-bridged dimer, $Ir_2(H)_4(\mu$ -SO₄)L₆ $(L = P(p-tolyl)_{3})$, showing the inequivalent phosphorus and hydrogen atoms.

Table 3. Infrared Data in the Sulfate Region for Ir₂H₄(μ -SO₄)(P(p -tolyl)₃)₆ Compared to Those for $Co_2(NH_3)_8(\mu\text{-}NH_2)(\mu\text{-}SO_4)^{3+17}$

ν_1	v_2	ν 3	v_4	
$Ir_2H_4(\mu\text{-SO}_4)(P(p\text{-tolyl})_3)$				
910 (br)	448 (br)	1034 (m)	729(s)	
		1178 (sh)	657(s)	
		1115(s)	568 (m)	
$Co_2(NH_3)_8(\mu\text{-}NH_2)(\mu\text{-}SO_4)^{3+}$				
995(m)	462 (m)	$1050 - 1060$ (m)	641(s)	
		1170(s)	610(s)	
		1105(s)	571(m)	

formation of $Ir_2H_4(\mu\text{-}SO_4)(P(p\text{-}tolyl)_3)_6$ from two very different routes also supports this formulation. The reaction of Ir(CO)- $(H)(P(p-toly1)_3)_3$ with H_2SO_4 provides the cleanest route.

$$
2\text{Ir(CO)}(\text{H})(\text{P}(p\text{-tolyl})_3)_3 + \text{H}_2\text{SO}_4 \rightarrow
$$

$$
\text{Ir}_2\text{H}_4(\mu\text{-SO}_4)(\text{P}(p\text{-tolyl})_3)_6 + 2\text{CO}
$$

Reaction of Ir(CO)(H)(P(p -tolyl)₃)₃ with SO₂/O₂ also provides a route, though other species are also formed and hydrogen must be scavenged. Conversion of SO_2 and O_2 to sulfate by Ir(I) complexes is commonly observed.4,19 The minor products from reaction of SO₂/O₂ with Ir(CO)(H)(P(p-tolyl)₃)₃ show triplets for the hydrides and likely involve $P(p$ -tolyl)₃ dissociation (OP- $(p$ -tolyl)₃ is observed), perhaps to give sulfate as bidentate on one iridium or μ - η ⁴, but the amounts observed are too low for definitive characterization.

Conclusion

In this paper we have reported the first crystal structure of an iridium complex containing both hydride and pyramidally coordinated SO_2 . Reaction of this complex with O_2 produces a new complex containing a sulfate bridging two iridium centers. The same complex is prepared in better yield from reaction of $H₂SO₄$ with Ir(CO)(H)(P(p-tolyl)₃)₃.

Acknowledgment. Purchase of the Siemens R3m/V diffractometer was made possible by Grant 89-13733 from the Chemical Instrumentation Program of the National Science Foundation. The Varian VXR-400 NMR instrument was purchased through a grant from the Department of Education (2-2-01011). T.S.J. acknowledges support from the Research Corp. (Grant C2971RR).

Supporting Information Available: Listings of crystal data, atomic coordinates, complete interatomic distances and angles, anisotropic thermal parameters, and calculated positions of hydrogen atoms for the structural study of Ir(CO)(H)(SO₂)(P(p-tolyl)₃)₂ (6 pages). Ordering information is given on any current masthead page.

IC951249Y

^{(19) (}a) Kubas G. J. *Inorg. Chem.* **1979**, *18*, 182. (b) Valentine, J.; Valentine, D., Jr.; Collman, J. P. *Inorg. Chem.* **1971**, *10*, 219. (c) Ryan, R. R.; Kubas, G. J. *Inorg. Chem.* **1978**, *17*, 894. (d) Fettinger, J. C.; Churchill, M. R.; Bernard, K. A.; Atwood, J. D. *J. Organomet. Chem.* **1988**, *340*, 377.